Part Number Hot Search : 
LM317MG ZM4745 MCP450P L1722 IXTM7P15 FST16244 D27C1000 2SK31
Product Description
Full Text Search
 

To Download 30-FT12NMA160SH-M669F08 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  30-FT12NMA160SH-M669F08 flow2 mnpc 1200v/160a mixed voltage npc topology reactive power capability low inductance layout split output common collector neutral connection solar inverter ups active frontend 30-FT12NMA160SH-M669F08 tj=25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1200 v t h =80c 17 t c =8 0c 22 t h =8 0c 40 t c = 8 0c 60 ma ximum junction temperature t jmax 150 c half bridge igbt t h =80c 157 t c = 80c 202 t h = 80c 398 t c = 80c 604 t sc t j 1 50c 10 s v cc v ge =15v 80 0 v t urn off safe operating area v cemax = 1200v, t vj 150c 3 2 0 schematic types target applications t j =t j max t j =t j max t p limited by t j max v dc collector current v ce i cpulse i c features flow2 13mm housing 14 maximum ratings i frm condition t j =t j max tp= 10ms a i 2 t-value i f c v w a a a t j =t j max co l lector-emitter break down voltage pulsed collector current 480 maximum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings gat e-emitter peak voltage 175 1200 20 a w a 2 s half bridge igbt inverse diode dc forward current maximum repetitive forward current p tot power dissipation per diode i 2 t 40 copyright by vincotech 1 revision: 2
30-FT12NMA160SH-M669F08 tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition neutral point fwd t h =80c 96 t c =8 0c 129 t h = 80c 11 0 t c = 80c 166 neutral point igbt t h =80c 91 t c =8 0c 121 t h = 80c 174 t c = 80c 264 t sc t j 1 50c 6 s v c c v ge =15v 360 v neutral point inverse diode t h =80c 38 t c =8 0c 51 t h =8 0c 65 t c =8 0c 99 half bridge fwd t h =80c 50 t c =8 0c 66 t h =8 0c 94 t c =8 0c 14 3 a t urn off safe operating area v ce 600v, t j 175c 3 0 0 v ce maximum junction temperature t j max po w er dissipation per diode maximum junction temperature peak repetitive reverse voltage maximum repetitive forward current dc forward current t j =t j max t j =t j max v rrm a v c t j =t j m ax v ge i f t j max i cpulse v a 60 0 3 00 t p limited by t j max t j =t j max i c a sho rt circuit ratings dc collector current power dissipation per igbt collector-emitter break down voltage pulsed collector current gate-emitter peak voltage v w power dissipation per diode c peak repetitive reverse voltage 150 v a a t j =t j max 120 0 t p limited by t j max (halfwave 1 phase 60hz) w c t p l imited by t j max p tot i frm v rrm p tot dc forward current i f nonrepetitive peak surge current i frm p tot maximum junction temperature t j max dc forward current a t j =t j max t p limited by t j max a i f 1200 i fsm non-repetitive peak surge current v rrm 600 c m a ximum junction temperature t j max 15 0 p eak repetitive reverse voltage 60 175 600 20 w a w v power dissipation per diode p tot t j =t j max t j =t j max 65 0 1 75 copyright by vincotech 2 revision: 2
30-FT12NMA160SH-M669F08 tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 comparative tracking index clearance insulation voltage creepage distance c storage temperature t stg -40+125 c - 40+(tjmax - 25) t op operation temperature under switching condition copyright by vincotech 3 revision: 2
30-FT12NMA160SH-M669F08 parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1 1,97 3,4 tj=125c 1,65 tj=25c 1,33 tj=125c 1,01 tj=25c 91 tj=125c 91 tj=25c 0,25 tj=125c thermal resistance chip to heatsink per chip r thjh 1,77 the rmal resistance chip to case per chip r thjc 1,17 tj=25c 5,2 5,8 6,5 tj=125c tj=25c 2 2,02 2,4 tj=125c 2,37 tj=25c 0,02 tj=125c tj=25c 480 tj=125c none tj=25c 133 tj=125c 135 tj=25c 20 tj=125c 23 tj=25c 225 tj=125c 276 tj=25c 38 tj=125c 64 tj=25c 1,80 tj=125c 3,18 tj=25c 2,52 tj=125c 4,03 tj=25c 1,47 1,7 tj=125c 1,29 tj=25c 127 tj=125c 151 tj=25c 40 tj=125c 81 tj=25c 3,02 tj=125c 7,13 di(rec)max tj=25c 12386 /dt tj=125c 3767 tj=25c 0,31 tj=125c 1,01 thermal resistance chip to heatsink per chip r thjh 0,64 the rmal resistance chip to case per chip r thjc 0,42 tj=25c 5 5,8 6,5 tj=125c tj=25c 1,05 1,58 1,85 tj=125c 1,8 tj=25c 0,0052 tj=125c tj=25c 1200 tj=125c none tj=25c 103 tj=125c 103 tj=25c 17 tj=125c 19 tj=25c 158 tj=125c 179 tj=25c 44 tj=125c 64 tj=25c 1,06 tj=125c 1,52 tj=25c 2,48 tj=125c 3,32 thermal resistance chip to heatsink per chip r thjh 0,54 the rmal resistance chip to case per chip r thjc 0,36 the rmal grease thickness 50um = 1 w/mk thermal grease thickness 50um = 1 w/mk 15 gate-emitter leakage current 20 na integrated gate resistor r gint pf k/ w 3 50 100 160 100 350 1200 25 r gint collector-emitter saturation voltage co l lector-emitter cut-off incl diode neutral point igbt v ge(th) turn-on energy loss per pulse fal l time turn-off delay time integrated gate resistor turn-on delay time input capacitance output capacitance c rss c oss c ies reverse transfer capacitance rg o ff=4 gate-emitter leakage current i ces v ce(sat) i ges f=1mhz 1 5 t hermal grease thickness 50um = 1 w/mk i ces t d(on) i ges erec t d(off) t f v f e off c ies q gate c rss turn-on delay time neutral point fwd peak rate of fall of recovery current q rr t rr i rrm t r c oss fall time v ce =v ge v ce(sat) e on turn-off delay time ga t e charge q gate gate emitter threshold voltage t d(off) turn-off energy loss per pulse ri se time t f 15 t r t d(on) rgon=4 rgo ff=4 v ge(th) peak reverse recovery current rev erse recovered energy rise time value conditions i r characteristic values forward voltage thr eshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t half bridge igbt inverse diode 7 7 7 k/w v v m ma reverse current k/w 120 a/s diode forward voltage turn-off energy loss per pulse reverse transfer capacitance gate charge output capacitance turn-on energy loss per pulse collector-emitter cut-off current incl. diode halfbridge igbt gate emitter threshold voltage collector-emitter saturation voltage ns ws 0 100 480 100 15 0 e on e off 1200 th e rmal grease thickness 50um = 1 w/mk 15 0 0 0,006 160 rgon=4 rgon=4 thermal resistance chip to heatsink per chip r thjh thermal resistance chip to case per chip r thjc reverse recovery time re v erse recovered charge input capacitance v v 0,0016 15 0 ma na 600 v ce =v ge f=1mhz 20 1 0 0 25 350 740 540 920 186 6280 400 v ns a c mws nc pf ma v ns mws 9200 v tj=25c nc tj=25c 620 k/w 0,24 0,16 15 960 0 copyright by vincotech 4 revision: 2
30-FT12NMA160SH-M669F08 parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value conditions characteristic values tj=25c 1,00 1,64 1,95 tj=125c 1,55 thermal resistance chip to heatsink per chip r thjh 1,45 cou pled thermal resistance inverter transistor-diode r thjc 0,96 tj=25c 1,50 2,47 3,30 tj=125c 2,11 tj=25c 200 tj=125c tj=25c 107 tj=125c 142 tj=25c 51 tj=125c 69 tj=25c 6 tj=125c 13 di(rec)max tj=25c 5985 /dt tj=125c 2890 tj=25c 1,71 tj=125c 3,61 thermal resistance chip to heatsink per chip r thjh 0,74 the rmal resistance chip to case per chip r thjc 0,49 2 -5 a/ s a v a ns k/w tj=100c 22000 % tj=25c 30 power dissipation p mw 200 power dissipation constant rated resistance r r/r r100=1486 deviation of r25 thermal grease thickness 50um = 1 w/mk q rr rgon=4 pea k reverse recovery current thermistor neutral point inverse diode e rec reverse recovery time pea k rate of fall of recovery current reverse recovered charge half bridge fwd reverse recovery energy t rr reverse leakage current v f i r diode forward voltage v f diode forward voltage i rrm thermal grease thi ckness 50um = 1 w/mk 15 1200 60 100 350 tj=25c tj=25c tj=25c b-value b (25/100) tol. 3% b-v alue b (25/50) tol. 3% vin cotech ntc reference k +5 mw/k v tj=25c k/w mws c b k 3950 3998 copyright by vincotech 5 revision: 2
30-FT12NMA160SH-M669F08 figure 1 igbt figure 2 igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 25 0 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 igbt fi gure 4 np fwd typical transfer characteristics typic al fwd forward current as i c = f(v ge ) a f unction of forward voltage i f = f(v f ) at at t p = 25 0 s t p = 250 s v c e = 10 v t j = 25/ 150 c t j = 25/ 150 c typical output characteristics half bridge igbt and neutral point fwd half bridge 0 80 160 240 320 0 1 2 3 4 5 v ce (v) i c (a) 0 20 40 60 80 100 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 0,0 0,5 1,0 1,5 2,0 2,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 80 160 240 320 0 1 2 3 4 5 v ce (v) i c (a) copyright by vincotech 6 revision: 2
30-FT12NMA160SH-M669F08 figure 5 igbt figure 6 igbt typical switching energy losses typic al switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 100 a r goff = 4 figure 7 np fw d figure 8 np fwd typical reverse recovery energy loss typic al reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 100 a half bridge half bridge igbt and neutral point fwd e on high t e off high t e on low t e off low t 0 2 4 6 8 0 5 0 1 00 150 200 i c (a) e (mws) e off high t e off low t 0 2 4 6 8 0 4 8 12 16 20 r g (  ) e (mws) e on low t e on high t e rec high t e rec low t 0 0,4 0 ,8 1,2 1,6 0 40 80 120 160 200 i c (a) e (mws) e rec high t e rec low t 0 0,4 0 ,8 1,2 1,6 0 4 8 12 16 20 r g (  ) e (mws) copyright by vincotech 7 revision: 2
30-FT12NMA160SH-M669F08 figure 9 igbt figure 10 igbt typical switching times as a typic al switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wit h an inductive load at with an inductive load at t j = 12 5 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 100 a r goff = 4 figure 11 np fw d figure 12 np fwd typical reverse recovery time as a typic al reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v half bridge half bridge igbt and neutral point fwd t doff t f t don t r 0,00 0,0 1 0,10 1,00 0 40 80 120 160 200 i c (a) t (ms) t rr low t 0,00 0,0 3 0,06 0,09 0,12 0,15 0 4 8 12 16 20 r gon (  ) t rr (ms) t rr high t t doff t f t don t r 0,00 0,0 1 0,10 1,00 0 4 8 12 16 20 r g (  ) t (ms) t rr high t t rr low t 0,00 0,0 2 0,04 0,06 0,08 0,10 0 40 80 120 160 200 i c (a) t rr (ms) copyright by vincotech 8 revision: 2
30-FT12NMA160SH-M669F08 figure 13 np fwd figure 14 np fwd typical reverse recovery charge as a typic al reverse recovery charge as a function of collector current function of jfet turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at a t t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v figure 15 np fw d figure 16 np fwd typical reverse recovery current as a typic al reverse recovery current as a function of collector current function of jfet turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v half bridge half bridge igbt and neutral point fwd i rrm high t i rrm low t 0 50 10 0 150 200 250 0 4 8 12 16 20 r gon (  ) i rrm (a) q rr high t q rr low t 0 2 4 6 8 10 0 4 8 12 16 20 r gon (  ) q rr (mc) i rrm high t i rrm low t 0 30 60 9 0 120 150 180 0 40 80 120 160 200 i c (a) i rrm (a) q rr high t q rr low t 0 2 4 6 8 10 1 2 0 4 0 80 120 160 200 i c (a) q rr (mc) copyright by vincotech 9 revision: 2
30-FT12NMA160SH-M669F08 figure 17 np fwd figure 18 np fwd typical rate of fall of forward typic al rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of jfet turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /d t,di rec /dt = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v figure 19 igbt fi gure 20 np fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,2 4 k/w r thjh = 0,6 4 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,08 2,26 0,17 3,90 0,06 0,29 0,11 0,85 0,07 0,05 0,08 0,18 0,02 0,01 0,20 0,04 0,01 0,002 0,04 0,01 0,03 0,001 half bridge half bridge igbt and neutral point fwd t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -3 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -3 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt t di rec /dt t 0 50 0 0 10000 15000 20000 25000 30000 0 4 8 12 16 20 r gon (  ) di rec / dt (a/ms) di rec /dt t di 0 /dt t 0 20 0 0 4000 6000 8000 10000 12000 14000 0 40 80 120 160 200 i c (a) di rec / dt (a/ms) copyright by vincotech 10 revision: 2
30-FT12NMA160SH-M669F08 figure 21 igbt figure 22 igbt power dissipation as a colle ctor current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 c t j = 175 c v ge = 15 v fi gure 23 np fw d figure 24 np fwd power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 15 0 c t j = 150 c half bridge half bridge igbt and neutral point fwd 0 200 400 600 800 0 50 100 150 200 t h ( o c) p tot (w) 0 50 100 150 200 250 0 50 100 150 200 t h ( o c) i c (a) 0 50 100 150 200 250 0 50 100 150 200 t h ( o c) p tot (w) 0 30 60 90 120 150 180 0 50 100 150 200 t h ( o c) i f (a) copyright by vincotech 11 revision: 2
30-FT12NMA160SH-M669F08 figure 25 igbt figure 26 igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q g ) at at d = single pulse i d = 16 0 a th = 80 oc t j = 25 oc v g e = 15 v t j = t jmax oc figure 27 outp ut inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical shor t circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at a t v c e = 120 0 v v ce 120 0 v t j 175 oc t j = 175 oc half bridge igbt and neutral point fwd half bridge 0 2,5 5 7,5 10 12,5 15 17,5 0 100 200 300 400 500 600 700 800 q g (nc) v ge (v) 240v 960v v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 2,5 5 7,5 10 12,5 15 17,5 12 13 14 15 16 17 18 19 20 v ge (v) t sc (s) 0 200 400 600 800 1000 1200 12 13 14 15 16 17 18 19 20 v ge (v) i c (sc) copyright by vincotech 12 revision: 2
30-FT12NMA160SH-M669F08 figure 27 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jmax -25 oc u c c minus =u ccplus switching mode : 3 level switching half bridge half bridge igbt and neutral point fwd 0 100 200 300 400 500 600 0 200 400 600 800 1000 1200 1400 v ce (v) i c (a) i c max v ce max i c module i c chip copyright by vincotech 13 revision: 2
30-FT12NMA160SH-M669F08 figure 1 np igbt figure 2 np igbt typical output characteristics typic al output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 25 0 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 np i gbt figure 4 fwd typical transfer characteristics typic al fwd forward current as i c = f(v ge ) a f unction of forward voltage i f = f(v f ) at at t p = 25 0 s t p = 250 s v c e = 10 v t j = 25/ 150 c t j = 25/ 150 c neutral point igbt and half bridge fwd neutral point igbt 0 50 100 150 200 250 300 0 1 2 3 4 5 v ce (v) i c (a) 0 20 40 60 80 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 0 1 2 3 4 5 v ce (v) i c (a) copyright by vincotech 14 revision: 2
30-FT12NMA160SH-M669F08 figure 5 np igbt figure 6 np igbt typical switching energy losses typic al switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 100 a r goff = 4 figure 7 fwd figur e 8 fwd typical reverse recovery energy loss typic al reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 100 a neutral point igbt neutral point igbt and half bridge fwd e rec high t e rec low t 0 1 2 3 4 5 0 50 1 00 150 200 i c (a) e (mws) e rec high t e rec low t 0 1 2 3 4 5 0 4 8 12 1 6 20 r g (  ) e (mws) e off high t e on high t e on low t e off low t 0 1 2 3 4 5 6 0 5 0 1 00 150 200 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 1 2 3 4 5 6 0 4 8 12 1 6 20 r g (  ) e (mws) copyright by vincotech 15 revision: 2
30-FT12NMA160SH-M669F08 figure 9 np igbt figure 10 np igbt typical switching times as a typic al switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wit h an inductive load at with an inductive load at t j = 12 5 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 100 a r goff = 4 figure 11 fwd figur e 12 fwd typical reverse recovery time as a typic al reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4,0 v g e = 15 v neutral point igbt neutral point igbt and half bridge fwd t doff t f t don t r 0,00 0,0 1 0,10 1,00 0 50 100 150 200 i c (a) t ( m s) t doff t f t r t don 0,00 0, 0 1 0,10 1,00 0 4 8 12 16 20 r g (  ) t ( m s) t rr high t t rr low t 0 0,1 0 ,2 0,3 0,4 0,5 0,6 0,7 0 4 8 12 16 20 r gon (  ) t rr (ms) t rr high t t rr low t 0,00 0,0 3 0,06 0,09 0,12 0 50 100 150 200 i c (a) t rr (ms) copyright by vincotech 16 revision: 2
30-FT12NMA160SH-M669F08 figure 13 fwd figure 14 fwd typical reverse recovery charge as a typic al reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at a t t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v figure 15 fwd figur e 16 fwd typical reverse recovery current as a typic al reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v neutral point igbt and half bridge fwd neutral point igbt i rrm high t i rrm low t 0 40 80 1 20 160 200 0 4 8 12 16 20 r gon (  ) i rrm (a) q rr high t q rr low t 0 3 6 9 12 15 0 4 8 12 16 20 r gon (  ) q rr (mc) i rrm high t i rrm low t 0 30 60 9 0 120 150 180 0 50 100 150 200 i c (a) i rrm (a) q rr high t q rr low t 0 3 6 9 12 1 5 1 8 0 50 100 150 200 i c (a) q rr (mc) copyright by vincotech 17 revision: 2
30-FT12NMA160SH-M669F08 figure 17 fwd figure 18 fwd typical rate of fall of forward typic al rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /d t,di rec /dt = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v figure 19 np i gbt figure 20 fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 0, 5 4 k/w r thjh = 0,7 4 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,11 2,87 0,07 3,67 0,09 0,46 0,10 0,54 0,12 0,10 0,20 0,10 0,17 0,02 0,26 0,03 0,03 0,004 0,07 0,005 neutral point igbt and half bridge fwd neutral point igbt t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -3 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -3 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt t di rec /dt t 0 30 0 0 6000 9000 12000 15000 18000 0 4 8 12 16 20 r gon (  ) di rec / dt (a/ms) di 0 /dt t di rec /dt t 0 20 0 0 4000 6000 8000 10000 0 50 100 150 200 i c (a) di rec / dt (a/ms) copyright by vincotech 18 revision: 2
30-FT12NMA160SH-M669F08 figure 21 np igbt figure 22 np igbt power dissipation as a colle ctor current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 oc t j = 175 oc v ge = 15 v fi gure 23 fwd figur e 24 fwd power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 15 0 oc t j = 150 oc neutral point igbt neutral point igbt and half bridge fwd 0 50 100 150 200 250 300 350 0 50 100 150 200 t h ( o c) p tot (w) 0 25 50 75 100 125 150 0 50 100 150 200 t h ( o c) i c (a) 0 50 100 150 200 250 0 50 100 150 200 th ( o c) p tot (w) 0 20 40 60 80 100 0 50 100 150 200 th ( o c) i f (a) copyright by vincotech 19 revision: 2
30-FT12NMA160SH-M669F08 figure 25 np igbt figure 26 np igbt reverse bias safe operating area gate voltage vs gate charge i c = f(v ce ) v ge = f(q g ) at at t j = t jmax -25 oc i d = 1 00 a u ccminus =u ccplus t j = 25 oc s witching mode : 3 level switching figure 27 outp ut inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical shor t circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v c e = 60 0 v v ce 400 v t j 150 oc t j = 125 oc neutral point igbt neutral point igbt 0 50 100 150 200 250 300 350 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module ic chip 0 2 4 6 8 10 12 14 16 0 100 200 300 400 500 600 700 q g (nc) v ge (v) 120v 480v 0 2 4 6 8 10 12 14 10 11 12 13 14 15 v ge (v) t sc (s) 0 200 400 600 800 1000 1200 1400 1600 1800 12 13 14 15 16 17 18 19 20 v ge (v) i c (sc) copyright by vincotech 20 revision: 2
30-FT12NMA160SH-M669F08 figure 25 np inverse diode figure 26 np inverse diode typical fwd forward current as fwd transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 25 0 s d = tp / t r thjh = 1,4 5 k/w figure 27 np i nverse diode figure 28 np inverse diode power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 oc t j = 175 oc np igbt inverse diode 0 20 40 60 80 100 0,0 0,5 1,0 1,5 2,0 2,5 3,0 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 25 50 75 100 125 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 th ( o c) i f (a) copyright by vincotech 21 revision: 2
30-FT12NMA160SH-M669F08 figure 1 halfbridge igbt inverse diode figure 2 halfbridge igbt inverse diode typical fwd forward current as fwd transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 25 0 s d = t p / t r thjh = 1,7 7 k/w figure 3 half bridge igbt inverse diode figure 4 halfbridge igbt inverse diode power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 15 0 oc t j = 150 oc half bridge inverse diode 0 5 10 15 20 25 30 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i f (a) copyright by vincotech 22 revision: 2
30-FT12NMA160SH-M669F08 figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 40 0 0 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  copyright by vincotech 23 revision: 2
30-FT12NMA160SH-M669F08 t j 125 c r gon 4  r goff 4  figure 1 half bridge igbt figure 2 half bridge igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -1 5 v v ge (0%) = -15 v v ge (100%) = 15 v v g e (100%) = 15 v v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 100 a i c (100%) = 100 a t doff = 0,2 8 s t don = 0,1 4 s t eoff = 0,6 6 s t eon = 0,2 7 s figure 3 half bridge igbt figure 4 half bridge igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 100 a i c (100%) = 100 a t f = 0,0 6 s t r = 0,0 2 s switching definitions half bridge general conditions = = = i c 1% v ce 90% v ge 90% -25 0 25 50 7 5 100 125 -0,2 0 0,2 0,4 0,6 0,8 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce5% -50 0 50 10 0 150 200 250 2,95 3,05 3,15 3,25 3,35 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 7 5 100 125 0,1 0,15 0,2 0,25 0,3 0,35 time (us) % v ce i c t f i c10% i c90% -50 0 50 10 0 150 200 250 3,1 3,15 3,2 3,25 3,3 time(us) % t r v ce i c copyright by vincotech 24 r evision: 2
30-FT12NMA160SH-M669F08 figure 5 half bridge igbt figure 6 half bridge igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 70, 22 kw p on (100%) = 70, 22 kw e off (100%) = 4,0 3 mj e on (100%) = 3,1 8 mj t eoff = 0,6 6 s t eon = 0,2 7 s figure 7 neut ral point fwd turn-off switching waveforms & definition of t rr v d (100%) = 700 v i d (100%) = 100 a i rrm (100%) = -15 1 a t rr = 0,0 8 s switching definitions half bridge i c 1% v ge 90% -25 0 25 5 0 7 5 100 125 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff v ce 3% v ge 10% -25 0 25 50 7 5 100 125 2,9 3 3,1 3,2 3,3 3,4 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -200 -15 0 -100 -50 0 50 100 150 3,1 3,15 3,2 3,25 3,3 time(us) % i d v d fitted copyright by vincotech 25 revision: 2
30-FT12NMA160SH-M669F08 figure 8 neutral point fwd figure 9 neutral point fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 10 0 a p rec (100%) = 70, 22 kw q rr (100%) = 7,1 3 c e rec (100%) = 1,0 1 mj t qrr = 0,1 6 s t erec = 0,1 6 s figure 10 half bridge igbt half bridge switching measurement circuit swi tching definitions half bridge t qrr -150 -1 0 0 -50 0 50 100 150 3,1 3,15 3,2 3,25 3,3 3,35 time(us) % i d q rr -25 0 25 50 75 100 125 3,1 3,15 3,2 3,25 3,3 3,35 time(us) % p rec e rec t erec copyright by vincotech 26 revision: 2
30-FT12NMA160SH-M669F08 t j 125 c r gon 4  r goff 4  figure 1 neutral point igbt figure 2 neutral point igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -1 5 v v ge (0%) = -15 v v ge (100%) = 15 v v g e (100%) = 15 v v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 100 a i c (100%) = 100 a t doff = 0,1 8 s t don = 0,1 0 s t eoff = 0,4 4 s t eon = 0,1 8 s figure 3 neut ral point igbt figure 4 neutral point igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 100 a i c (100%) = 100 a t f = 0,0 64 s t r = 0,0 19 s switching definitions neutral point igbt general conditions = = = i c 10% v ge 10% t don v ce 3% -50 0 50 10 0 150 200 250 2,95 3 3,05 3,1 3,15 3,2 3,25 time(us) % i c v ce t eon v ge i c 1% v ce 90% v ge 90% -25 0 25 50 7 5 100 125 -0,2 0 0,2 0,4 0,6 time (us) % t doff t eoff v ce i c v ge fitted i c 10% i c 90% i c 60% i c 40% -25 0 25 50 7 5 100 125 0,00 0,05 0,10 0,15 0,20 0,25 0,30 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 10 0 150 200 250 3,05 3,1 3,15 3,2 3,25 time(us) % t r v ce i c copyright by vincotech 27 r evision: 2
30-FT12NMA160SH-M669F08 figure 5 neutral point igbt figure 6 neutral point igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 69, 93 kw p on (100%) = 69, 9279 kw e off (100%) = 3,3 2 mj e on (100%) = 1,5 2 mj t eoff = 0,4 4 s t eon = 0,1 8 s figure 7 half bridge fwd turn-off switching waveforms & definition of t rr v d (100%) = 700 v i d (100%) = 100 a i rrm (100%) = -14 2 a t rr = 0,0 7 s switching definitions neutral point igbt i c 1% u ge 90% -25 0 25 5 0 7 5 100 125 -0,2 0 0,2 0,4 0,6 time (us) % p off e off t eoff u ce 3% u ge 10% -25 0 25 50 7 5 100 125 2,95 3 3,05 3,1 3,15 3,2 3,25 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -150 -10 0 -50 0 50 100 150 3,05 3,1 3,15 3,2 3,25 3,3 3,35 time(us) % i d u d fitted copyright by vincotech 28 revision: 2
30-FT12NMA160SH-M669F08 figure 8 half bridge fwd figure 9 half bridge fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t er ec = integrating time for e rec ) i d (100%) = 10 0 a p rec (100%) = 69, 93 kw q rr (100%) = 12, 71 c e rec (100%) = 3,6 1 mj t qint = 1,0 0 s t erec = 1,0 0 s figure 10 neut ral point igbt neutral point igbt switching measurement circuit swi tching definitions neutral point igbt t qint -150 -1 0 0 -50 0 50 100 150 3 3,5 4 4,5 time(us) % i d q rr -25 0 25 50 75 100 125 3 3,2 3,4 3,6 3,8 4 4,2 time(us) % p rec e rec t erec copyright by vincotech 29 revision: 2
30-FT12NMA160SH-M669F08 ordering code & marking version o rdering code in datamatrix as in packaging barcode as without thermal paste 13mm housing 30-FT12NMA160SH-M669F08 m669f08 m669f08 pinout outline ordering c ode and m arking - outline - pinout copyright by vincotech 30 revision: 2
30-FT12NMA160SH-M669F08 disclaimer lif e support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by vincotech 31 revision: 2


▲Up To Search▲   

 
Price & Availability of 30-FT12NMA160SH-M669F08

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X